Quantifying Multi-Decadal Change of Planted Forest Cover Using Airborne LiDAR and Landsat Imagery

نویسندگان

  • Xiaoyi Wang
  • Huabing Huang
  • Peng Gong
  • Gregory S. Biging
  • Qinchuan Xin
  • Yanlei Chen
  • Jun Yang
  • Caixia Liu
چکیده

Continuous monitoring of forest cover condition is key to understanding the carbon dynamics of forest ecosystems. This paper addresses how to integrate single-year airborne LiDAR and time-series Landsat imagery to derive forest cover change information. LiDAR data were used to extract forest cover at the sub-pixel level of Landsat for a single year, and the Landtrendr algorithm was applied to Landsat spectral data to explore the temporal information of forest cover change. Four different approaches were employed to model the relationship between forest cover and Landsat spectral data. The result shows incorporating the historic information using the temporal trajectory fitting process could infuse the model with better prediction power. Random forest modeling performs the best for quantitative forest cover estimation. Temporal trajectory fitting with random forest model shows the best agreement with validation data (R2 “ 0.82 and RMSE “ 5.19%). We applied our approach to Youyu county in Shanxi province of China, as part of the Three North Shelter Forest Program, to map multi-decadal forest cover dynamics. With the availability of global time-series Landsat imagery and affordable airborne LiDAR data, the approach we developed has the potential to derive large-scale forest cover dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of LiDAR and Landsat Data to Estimate Forest Canopy Cover in Coastal British Columbia

Disclaimer: The PDF document is a copy of the final version of this manuscript that was subsequently accepted by the journal for publication. The paper has been through peer review, but it has not been subject to any additional copy-editing or journal specific formatting (so will look different from the final version of record, which may be accessed following the DOI above depending on your acc...

متن کامل

PREDICTING FOREST HEIGHT FROM IKONOS, LANDSAT AND LiDAR IMAGERY

This paper compares and contrasts predictions of forest height in Sitka spruce (Picea sitchensis) plantations based on mediumresolution Landsat ETM+, high-resolution IKONOS satellite imagery and airborne Light Detection And Ranging (LiDAR) data. The relationship between field-measured height and LiDAR height is linear and highly significant (R 0.98) and so LiDAR height measurements were used to...

متن کامل

Multi-Temporal Assessment of Mangrove Forests Change in the Coastal Areas of Bushehr Region Based on Landsat Satellite Imagery

Continual access to precise information about the land use/land cover (LULC) changes of the Earth’s surface is extremely important for any sustainable development program in which LULC serves as one of the major input criteria. In this study, a supervised classification was applied to three Landsat images collected in 1986, 1998and 2018, providing mangrove forests change data in the coastal are...

متن کامل

Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods

Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...

متن کامل

Investigating New Advances in Forest Species Classification: Establishing a Baseline

Detailed forest classification provides critical information for forest managers. The potential for species level classification from remotely sensed data has been challenging in the past because of limitations of both available image data and traditional classification techniques. Such limitations may be reduced by the increased availability of higher spatial resolution imagery as well as deta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016